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On eigenvalues and eigenvectors of graphs*

Shyi-Long Lee
Institute of Chemistry, Academia Sinica, Taipei, 11529 Taiwan, ROC

and

Yeong-Nan Yeh
Institute of Mathematics, Academia Sinica, Taipei, 11529 Taiwan, ROC

It is known that there exists an equivalence relation between the adjacency matrix
of graph theory and the Hiickel matrix of Hiickel molecular orbital theory. This paper
presents some useful methods which allow us to systematically find eigenvalues and
eigenvectors of various classes of graphs without calculating characteristic polynomials.
Results obtained from this study give insight into the topological studies of molecular
orbitals.

1. Introduction

In this paper, we treat ordinary graphs (i.e. finite, undirected, at most one
edge joining a pair of vertices, and no edge joining a vertex to itself). Since an
ordinary graph has no loops or undirected edges, its adjacency matrix A is a symmetric
matrix and has real eigenvalues 4, . .. 2 4, which are called the spectrum of G [1].
There is an immediate one-to-one correspondence between labeled graphs on n
nodes and n x n symmetric binary matrices with zero diagonal elements. The row
sums of A(G) are the degrees of the nodes in G. If A} and A, are adjacency matrices
which arise from two differentt labelings of the same graph G, then for some
permutation matrix P, A; = P"'A,P. According to the following theorem [1], the
spectrum of G is invariant under relabeling.

THEOREM 1

The characteristic polynomial of matrix A and, hence, the eigenvalues, are
the same as those of B~'AB, where B is any non-singular matrix.

*Dedicated to Professor Frank Harary on the occasion of his 70th birthday.
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Clearly, the spectrum of G yields some information about G. There has been
much work done on the question of relating geometric and combinatorial properties
of G to the eigenvalues of G. Related concepts include the coloring number £(G) [2],
the girth number g(G) [3,4], the line graph of G [3,5], and the embedding
problem [3]. It is known that there exists a relation between the adjacency matrix
of graph theory and the Hiickel matrix of Hiickel molecular orbital theory [6,7].
Topological analysis of molecular orbitals of chemical compounds [8,9] can be
performed using the newly proposed net sign approach by Lee et al. [10,11]. The
values of net signs of molecular orbital graphs of model chemical compounds can
be calculated from the eigenvectors of the adjacency matrix. This paper presents
some methods which can systematically derive eigenvalues and eigenvectors of
various classes of graphs with minimal calculation. Graphs such as the annulus,
cone, cycle, hypercube, path, spider, sun, torus, five kinds of regular polyhedra, etc.
will be considered to illustrate the utility of our approach.

In section 2, some concepts and results of linear algebra and operations on
graphs are reviewed and discussed. Also in section 2, we derive eigenvectors and
eigenvalues of circulant graphs (e.g. cycles, complete graphs), hypercube, path,
ladder, annulus, torus, grid, cylinder, etc. from the characteristics of circulant matrix
and the product operation of graphs. In section 3, similar procedures are applied to
graphs whose adjacency matrices can be expressed in partitioned form. Classes of
graphs belonging to this type, such as the k-level-circulant graph, regular polyhedra,
etc. are considered. In section 4, eigenvectors and eigenvalues of a full complete
binary tree and a full complete m-ary tree are discussed. Conclusions are given in
section 5.

Notation

Let p, denote the value e?™" = cos2n/n + isin2n/n, where i2= —1. Let I,

denote the identity matrix of order n, 0,, denote the zero matrix of dimension
m X n, and J,, denote the matrix of dimension m x n of 1’s. CSET(A) is denoted
as a complete set of eigenvectors of matrix A which contains n independent
eigenvectors of A.

2. Linear algebra and operations of graphs

In this section, we discuss and describe some observations connecting operations
of matrices and the corresponding operations of graphs. It would be useful if we
could generate the eigenvalues and eigenvectors of various classes of graphs from
well-studied graphs, say paths, cycles and small graphs, with the help of those
operations on graphs.

We will follow Harary [12,13] and Marcus and Minc [14] for any graph-
theoretic and matrix terminologies which are not defined in this paper. Let G, and
G, have disjoint node sets V; and V, and edge sets E; and E,, respectively. To define
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their Kronecker product [15] G, ® G,, consider any two nodes u = (uy, u,) and
v= (v, V). Then, u and v are adjacent in G, ® G, whenever u, v, € E(G,) and
u1 vy €E(Gy). Let A = [a;;] and B = [b;;] be two square matrices of order m and n,
respectively. Their join A @ B is defined as the square matrix of order m + n,

A®B A
“Jm B |

Their Cartesian product A X B is defined as the square matrix of order mn,

AXB=1,®A+B®I,.

The relations between these operations on matrices and the corresponding
operations on graphs are described in the following proposition:

PROPOSITION 1
Let G and H be two graphs. Then

(1) A(GUH)=A(G)UVAH),
2) A(G®H)=A(G) D AH),
(3) A(GO®H)=A(G)®AH),
4) A(GxH)=A(G)xXAH).

According to the following proposition, we can easily find the eigenvalues
and eigenvectors of graph G UH, G ® H, G X H if we have already found
them for graphs G and H.

PROPOSITION 2 ({16])

Let CSET(A) = (U, Uy, ..., Uy} with AUy = U for k=1,2,...,m and
CSET(B) = {V}, Vs, ..., V,} with BV;= B,V for j=1,2,...,n Then

(1) CSET(AUB) = (Wi, Wy, ..., Wy}, where W =[Uf0,] for 1 <k<m and
W,}; j =00,V 1for1<j<n The corresponding eigenvalue A, = o for 1 <k<m
and A4, j=fifor1<j<n

(2) CSET(A® B)= (W), Wa, ..., W), where Wii_py,,; =Uf @V for1<k<m
and 1<j<n. The corresponding eigenvalue Ay _1),4;= 4B for 1<k<m
and 1<j<n.

(3) CSET(AXB)= (W, Wy, ..., Wn,}, where Wy _1y,,;=V,@ U, for1<k<m
and 1 < j < n. The corresponding eigenvalue Ay _1ys4j= 0 + fifor 1<k <m
and 1 <j<n.
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A square matrix A is called a circulant matrix or a circulant if its successive
rows are obtained by cyclic permutations of its first row. Thus,

q G a3 - 4,
a, aQ 4y o Gy

A=|Gpuyy G 4 - Guo

@ a4 oa e

is a circulant, denoted by [[a;, a, ..., a,]]. Eigenvectors and eigenvalues of a
circulant matrix and a typical example, or path, are given in the following two
propositions:

PROPOSITION 3 ([17])

Let square matrix A be a circulant matrix [[a}, a3, . . ., a,]]. Then CSET(A)
= {Vi, Vo, ..., V,}, where VT = [1p*p* . p{"™D¥] for 1 < k < n. The corresponding
eigenvalue A, of eigenvector V, is given by

- k 2k (n=1)k
A =aqy+ap, +a3p; +. ..+ a.pn .

PROPOSITION 4 ([17])

Let & = kn/(n+ 1) and let L, be the graph of the path on n nodes. Then

: ot (T e
SO o

(1) AL, =la;]=

OO OO
oo o—oOo
—_0 o0 O

0
0

O -t

where a;;=1if i =j+ 1; a;;= 0 otherwise.

2y CSET(L,)=1{V;, V5,...,V,},where VkT =[x Xpg. - X ] With X = sin j§, for
S k=1,2,...,n

(3) The corresponding eigenvalue A, of eigenvector Vj is given by A, = 2 cos §;.

For a given positive integer, let ny, ny, ..., n, be a sequence of integers
where
<l
O<m<m<...<n,<3n
Then the circulant graph C,(ny, ny, . . ., n,) is the graph on n nodes vy, Uy, ..., U,

with vertex v; adjacent to each vertex ;i 4 n mod n)- The values n; are called
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jump sizes. The circulant graph C,(ny, ny, ..., n,) is a dy-regular graph, where
dy=a;+ay+...+a, Forexample, the circulant graphs Cio(1, 3) and Cy5(1, 2, 5)
are displayed in fig. 1. The eigenvectors and eigenvalues of the multi-jump-size
circulant are stated in corollary 5.

Fig. 1. Examples of multi-jump-size circulants.

COROLLARY 5
Let Cn(ny, np, . . ., n,) be a circulant graph on n nodes. Then
(1) A(Cu(m,n, ... n))=I[lay, az,...,a,]], where a;=1 if i=1+n; or
i=n+1-n; for some j; a;=0 otherwise.
(2) CSET(Cp(ny, g, . .. 1) = (Vi, Va, ..., V), where V! = [1pkp2*. . pUI
fork=1,2,...,n
(3) The corresponding eigenvalue A, of eigenvector V; is

Ay =2 cos2mkn/n if n,#Lin
1<i<p
and

Ay = Dk +2 2 cos2nmkn/n if n, = -;—n.
1Si<p

The graph of cycle C, on n nodes is C,(j), where gcd(n, j) =1 and the
complete graph K, on n nodes is C,(1,2,...,x), where x=%n if n is even;
X = %(n—l) otherwise. A complete set of eigenvectors and eigenvalues of these
two classes of graphs above are easily calculated by corollary 5.

Several classes of graphs can be generated by the Cartesian product of L,,
C, and K,. For example, Ladder(n) = L, X K,, Annulus(n) = C, X K;, Torus(m, n)



126 S.-L. Lee, Y.-N. Yeh, Eigenvalues and eigenvectors of graphs

= C,, X C,, Grid(m, n) = L, X L,, Cylinder(m, n) = L,, X C,. The class of cross graphs
Cross(n, m) (see fig. 2) is the Kronecker product of L,, and L,. The eigenvalues and
eigenvectors of the above six classes of graphs can also be easily found by propositions
2, 3 and 4.

/ \\\ \\ / y
SN N .
N4 AN 7N

e N ! \//
/ VRN \ ) / \\\ / \\\
< \\ / \ /
°® ® o ‘® \o
Fig. 2. L, ® Ls.

The hypercube of order n, H,, is defined by
Ho=K, and H,= K, x K, X...XKy(n times) if n> 0.

Obviously, CSET(H,) = {[1]} and the eigenvalue is 0. CSET(H,) can be
recurrently constructed in the manner stated in corollary 6.

COROLLARY 6
Let H, be the graph of the hypercube of order n. Then

A(H, ) Iy }

(1) A(H,,)-'[ Lo AH,_)|

(2) CSET(H.) = (W™, W, ..., W%}, where WL Wy = (o
+ W WY e CSET(H,_,)) for k=1,2, ...,20-D,

(3) The corresponding eigenvalue /1 of eigenvector W(") is n— 21 where i is
the number of sign changes in the process of constructing W,c , i.e. where
i is the number of —1’s appearing in the 2/ + 1 position, 1 £ j < (n— 1), in the
vector W™,
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3 k-level circulant graph and regular polyhedra

Consider graphs whose adjacency matrices can be expressed in partitioned
form. Every block is a square matrix of order m and has the same complete set of
eigenvectors. Examples of such graphs include generalized sun, generalized combs,
dodecahedron and icosahedron. A lemma and a theorem which are useful for finding
the eigenvectors and eigenvalues of these graphs are given below.

LEMMA 1 ({16])

Any number of commuting real symmetric matrices can be diagonalized by
the same real orthogonal matrix.

THEOREM 7

Let A;;, 1 <, j < n, be square matrices of order n and have the same complete
set of eigenvectors {Uy, Uy, ..., Uy} with A;; U, = a Uk Let B, = [a, ] be square
matrices of order n and have a complete set of elgenvectors AR é) , Ve
with B,V; *) = B; ")V(") for1 <k<mand 1<;<n. Thenacomplete set ofelgenvectors
{(Wy, W2, e W,,,,,,} of the square matrix

An An o A
Ao Ay Ap o Ay,
Anl An2 e Arm

is given by Wiy, = V¥ ®U] for k=1.2,....mand j=1,2,...,n The
corresponding eigenvalue A(k Dn+j 8 ﬂ/ .

Interesting applications of this theorem can be found if the A; are

circulant matrices. For a given positive integer, let (A} = {n,n2, . .., 1 P (AL}
= (g1, g2, « - . wmpp, )} and (M} = {myy,myp, . .. ,my, } be three sequences of integers,
where

O<nn<n12<...<n1pl S%n,

1
O<n21 <n22<...<n2P2 S’z—n,
O<my<mpy<...<mg Sn
Then the two-level-circulant graph, denoted as C,({m,ny, ..., 5, ),
1
{mpngns - .. ,n2p2}; {my,mg, ... ,mlqz}), is the graph defined on 2n nodes

Vi1, Vg2s - - + » Umy Va1, V22, - - .+ » Vo, With vertex vy, adjacent to vertex vy whenever
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[a=c and b =c + ngj(mod n) for some j] or [a=1,c=2,d=b+ m;;(mod n) for
some j]. The Annulus(n) is C,({Jj}, {(j}; {0}), where gcd(n, j)=1.

Let ay, ay, . . ., a, be a sequence with g;=1if i=1 + m,; for some j; a;=0
otherwise. Let V, =[1p¥p2t. . p{r=Dk] By corollary 5, {Vilk=1,2,...,n}is a
complete set of eigenvectors of any circulant graph on n nodes. Let B = [{ay, ay,. . ., a,]],
Ay = AC,(my,nyg, - . ,nlp‘)) and A, = A(C,(nyq,ny, . .. Mp, )) be three circulant
matrices with ;B = y,V;, iBT = 7,V and ViA; = o Vi fork=1,2,...,nand j=1,2.

COROLLARY 8

Let Ay, Ay, B, Vi, (N1}, (N2}, { M), Yis 240 O and @y, k=1,2,...,n and
i=1,2, be defined as above. Let C,{{N 1}, {N2}; {#M]}) be a two-level-circulant
graph. Then

2 4 B
C,({(NG}. (L) (M) = [BT AJ.

(2) CSET(C,({7 1}, (A 2); (M) = (W), Wa, . .., Wa,}, where (Woh_;, Wy
= [V eVl 1y 0® + (o), —Op) —z, =0} for k=1,2,...,n.

(3) The corresponding eigenvalues are given by {Ay_1, Ax} = (O + ye 0|y 0
+ (o — on)a—z, =0},

The graphs Cs({1}, {1}; {0, 1}), Cs({0}, {1};{0, 1}) and Cg({0}, {1}; {0})
are given in fig. 3.

R # '
/A Q 5 [
A /«"3 Y 0 & .
R
; / Y
[ ( © ; @
i; é g j ? Jy é /
e \\ // @ x ) 9\\ o -]
/ . . 3
o e . « 1 °
— ®

Fig. 3. Examples of two-level circulants.

The graph of generalized sun (generalized comb, respectively), Gsun(n, m)
(Gecomb(n, m), respectively) on mn nodes Vyy, Vg, . . ., V., with V;; is adjacent to
vertex Vj, for all k£ and all distinct i, j and the nodes {V}y, Vy3, ..., V},} form a cycle
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C, (path L,, respectively). Then, eigenvectors and eigenvalues of these two classes
of graphs can be obtained by theorem 7.

Cal{N1), {A)s - s (NG (M), (M3}, - .oy {Mie—1y}), where n;’s stand
for intra-circulant Jump sizes in the ith circulant and m;;’s stand for inter-circulant
jump sizes between ith and jth circulants. There are many classes of graphs which
can be included in this category, such as the graphs in fig. 4.

tetrahedron hexahedron octahedron dodecahedron icosahedron

Fig. 5. Five regular polyhedra.

There are exactly five kinds of regular polyhedra (see fig. 5): tetrahedron
(K4), hexahedron (H3), octahedron (K, + C;), dodecahedron and icosahedron. The
eigenvectors and eigenvalues of the dodecahedron can be derived by applying
theorem 7 and the following lemma. The results are stated in corollary 9.

LEMMA 2

Given the matrix
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a 1 0 0
1 0 b O
M=o ¢ o 1
0 0 1 a
Then:

(1) CSETM) = {[1 aof Blicp?>=b and o+ (a— cfya—1=0}, and
(2) The corresponding eigenvalues are {0+ a|cf? = b and o + (a—cB)a—1=0}.

COROLLARY 9
Let UF =[1pkp2. .. p" %] Then we have

[A(Cs) Is Oss  Oss

Is 055 B Oss
Oss BT 0ss 15 |
Oss Oss Is A(Cs

(1) A(dodecahedron) =

where
(1 0 0 0 1
110 00
B={0 1100
00110
00 011

(2) CSET(dodecahedron) = {W;, W,,...,Wy}. For k=1,2,3,4,5,

W wh_ Wl Wl )= ([laa BBI® Uyla® + (2 cos(2kn/5)
+ 221 + cos(kn/5)?)a = 1 = 0}.

(3) The corresponding eigenvalues are
{0+ 2 cos(2kn/5) o + (2 cos(km/S) £ 2V%(1 + cos(kn/5))2a—1=0,1<k<S).

For the derivation of eigenvectors and eigenvalues of an icosahedron, it is
necessary to learn the eigenproperties of graphs which can be obtained through the
operation direct sum on two circulant graphs. A general theorem concerning the
eigenproperties of direct sum on two circulants is stated below.

THEOREM 10

Let Uf =[1pkp2t. . .p P and VI =(1p/p%. . .p" V] fork=1,2,....m
andj=1,2,...,n Letsquare matrices A = [[a), @, ..., apll and B = [[by, b, . . ., b,]]
be two circulant matrices. Then
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A®B= A I
M “\J. B

2) CSET(AEBB) (W, Wy, ..., W,,,.), where Wk —[Oka]1f1<k<n-1
+a(dA-—dB) m=0},wheredA=a,+a2+...+a,,,anddB=b,+b2+...+b,,.

(3) The corresponding eigenvalue A, of eigenvector V, is given by
A = by +bypr +bspt +. . +b,plk if 1Sk<n-1

Aper =G+ apt +asp2f 4. a4, p"VF if 1<k<m-1
and
A Ay} = (na+dy|na® + a(d, — dg)—m = 0}.

Let the generalized wheel graph W,, , be the graph K,, @ C, and the complete
bipartite graph K,, , be the graph K, ® K,,. Then, CSET(W,, ,), CSET(K,, ,) and
their corresponding eigenvalues can be obtained by theorem 10.

Now, we are able to develop the derivation for the case of an icosahedron
and its generalization. The following theorem is essential in the derivation and the
results are given in corollary 12.

THEOREM 11
Let Ul =[1pkp2. . p %] for k=1,2,...,m and let P be the matrix
0 Jjn 0 O
p_|Im B Om 4

0 0, 0 J,|
0 AT J, B

where square matrices A = [[ay, ay,...,a,]] and B =[[by, by, ..., b,]] are two
circulant maatrices. Then

1) CSET(P)— {WI,WZ, .. W2,,,+2}k where {Wf,}_l,wz’;}z{[ouk OaUk]l
@ (21<lSm m+1—zpm) ZISASmapm ) } lf 1<k<m-1; and {WZm-l'WZm’
Wones1: Wamia) = ([0, sasT s = £1, 0% + a(dy + sdg) — m = 0).

2) The correspondmg eigenvalues {Ay_;, Aop) = ((Sicicm (B + ca;)pliDk))

141 (ZIQSm m+l-xpm) 2125l5mapr(n Dk} if 1<k<m-1; and {AQm—l’A’Zm*
amits Mpmaa) = (m/a|a” +o(dp £ dy)—m = 0).
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COROLLARY 12

[0 Jis 0 O
. Jsi B 05 A
A(icosahedron) = 0 05 0 Jgs ,
Oy AT Js B
where
[0 1 0 0 1]
1 01 0 O
B=}10 1 0 1 O
0 0 1 0 1
1 0 0 1 0
and ) )
(1 0 0 0 1]
i1 1.0 0 O
A=[(0 1 1 0 0/
0 01 1 0
|0 0 0 1 1]
Then

(1) CSET(P)= (Wi, Wy, .., W), where { WTJF % ([0UT 0 aU1|a*(1 + pik)
—1+p5r1f1<k<4 Wyl Wiy = [vT =[111111or[-511111]};
and (W}, W)= (V" - ]WT 5”21 1 111 or[-5"211111]).

(2) The corresponding eigenvalues {Ay,_;, Ay} = {((@(1+ p&)+ p& + p2ky|
A+ pdy=1+pk) if 1<k<m—1; and (Ag, A1os A1y A2} = (5,1, 53,
_51/2}.

4, Full complete binary tree and full complete m-ary tree

A graph G in which a vertex is distinguished from other vertices is called a
rooted graph and this distinct vertex is called the root of G. The complete binary
tree is a rooted tree where each vertex has either O or 2 sons. The height of a rooted
tree is the maximum level number of its external vertices. The full complete binary
tree of height n, B, (see fig. 6) is a complete binary tree where each external vertex
has the same height.

The full complete binary tree is a special class which can be constructed
recursively in the following way:

Bl =K1,

and let p=2"—1 and S, = [sy, 52, ..., 5,], where 5;= 1 if i =1; 5;= 0 otherwise.
Then
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S \ s K
o N, e
r N -

\\\
// \ \
/ \
/ \ / \\
® 0 ®

Fig. 6. Complete binary tree B,.

o s, S

P P
ABB,)=|S, B, 0] for n20.
s, 0 B,

Obviously, CSET(B;) = {[1]} and the eigenvalue is 0. The complete set of
eigenvectors and eigenvalues of B, can be recurrently constructed according to
theorem 13,

THEOREM 13

Letp=2"-1,¢g=2""'—n,r=2""1_1and B, be the graph of a full complete
binary tree. Then

(1) CSET(B,) = W™, Wi, ... . W), where W W'y = (ow
+wDT WY ECSET( D) for k=1,2,...,q; WO} =[ow D"
("'” )] for k=q+1, q+2,...,r; WO, _[1,4("")’r AT for
k= 1, 2,...,n, where A,(""‘)Tz Aé”"‘)T =[a@,. . .a ] with ayi-n =. .. =ayi_,

= 202 gin(i + 1), /sin §,, where &, = knt/(n + 1).

(2) The corresponding eigenvalue A, of eigenvector W™ is A{Y | = A4D = A¢D

fork=1,2,...,q; lg"}k = A"V fork=q+1,q+2,...,rand Apnik = 232 cos 8,

with §, =kn/(n+ 1) for k=1,2,...,n

The complete m-ary tree is a rooted tree where each vertex has either 0 or
m sons. The full complete m-ary tree of height n, B,(,”’), is a complete m-ary tree
where each external vertex has the same height. Then
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THEOREM 14

n-2 -2 n-3

Letp=m""l+m" 2+. . .+m+1l,q=m""2+m" 3+, . . +m+1-(n-1),

r=m""2+m"3+...+m+1 and B be the graph of the full complete m-ary
tree. Then
[0 S, S, S, ]
. ) es s, B™ 0 0
AB) = v, |=|s o0 BP0
(J1n ®S,) 0
s, 0 0 - B™
fornz0.
) CSET(B("‘)) {W(") W(n) W(n)} where {W'Sx';c)TmH,W’g;)_Tm”, . W(n)T}
{[Oz WiV’ ]IW(" Dt ECSET(B( ) 1<i<m) for k=1,2,...,q;
1T n— T
{W(m Ik+q- (m—2)’W(m-1)k+q me3y - W 1)k+q} {10z, ® WV w D
€ CSET(B{™), 2<i<m} for k= g+1,4+2,...,r and W<",,+,c

— [LACRT AT AT G k212, g where AP = A0 = 2
=da i1 i

NI L : , . -
A’(: ) = [01‘12 s .a,] with A2y tmtl = v m em T e emat]
= 20=92 5in(i + 1), /sin 8, where & = kn/(n + 1).

(2) The corresponding eigenvalue A, of eigenvector wMis AW = ,
-1
= .= =AY for k=1,2,....q; A(m—])k+q (m=2) = "{(m—-l)k-!»q —(m-3)

= ,12’,',3 1)k+q —/1(” D fork= q+1 qg+2,...,rand l("),,+k =2m"? cos 8,
w1th Sk—kn/(n+ 1) fork=1,2,...,

5. Conclusions

First of all, we investigate the general properties of eigenvectors and eigenvalues
of circulant graphs and paths. By applying some graph operations, we can then
easily derive the eigenvectors and eigenvalues for classes of graphs, which were
built up from circulants and paths, without calculating the characteristic polynomial.
Several classes of graphs such as generalized wheels, regular polyhedra, k-level-
circulant graphs, etc., are given to demonstrate the application of our methods.
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