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On eigenvalues and eigenvectors of graphs* 

Shyi-Long Lee 
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and 

Yeong-Nan Yeh 
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It is known that there exists an equivalence relation between the adjacency matrix 
of graph theory and the Htlckel matrix of Hilckel molecular orbital theory. This paper 
presents some useful methods which allow us to systematically find eigenvalues and 
eigenvectors of various classes of graphs without calculating characteristic polynomials. 
Results obtained from this study give insight into the topological studies of molecular 
orbitals. 

1. In t roduct ion  

In this paper, we treat ordinary graphs (i.e. finite, undirected, at most one 
edge joining a pair of  vertices, and no edge joining a vertex to itself). Since an 
ordinary graph has no loops or undirected edges, its adjacency matrix A is a symmetric 
matrix and has real eigenvalues ~1 > .  • • > ~n, which are called the spectrum of  G [1]. 
There is an immediate one-to-one correspondence between labeled graphs on n 
nodes and n × n symmetric binary matrices with zero diagonal elements. The row 
sums of A(G) are the degrees of the nodes in G. If A1 and A2 are adjacency matrices 
which arise from two differentt labelings of the same graph G, then for some 
permutation matrix P, A1 = p-1A2P. According to the following theorem [1], the 
spectrum of G is invariant under relabeling. 

THEOREM 1 

The characteristic polynomial of  matrix A and, hence, the eigenvalues, are 
the same as those of  B-lAB, where B is any non-singular matrix. 

*Dedicated to Professor Frank Harary on the occasion of his 70th birthday. 
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Clearly, the spectrum of G yields some information about G. There has been 
much work done on the question of relating geometric and combinatorial properties 
of G to the eigenvalues of G. Related concepts include the coloring number k(G) [2], 
the girth number g(G) [3,4], the line graph of G [3,5], and the embedding 
problem [3]. It is known that there exists a relation between the adjacency matrix 
of graph theory and the H~ickel matrix of H~ckel molecular orbital theory [6,7]. 
Topological analysis of molecular orbitals of chemical compounds [8,9] can be 
performed using the newly proposed net sign approach by Lee et al. [10, 11]. The 
values of net signs of molecular orbital graphs of model chemical compounds can 
be calculated from the eigenvectors of the adjacency matrix. This paper presents 
some methods which can systematically derive eigenvalues and eigenvectors of 
various classes of graphs with minimal calculation. Graphs such as the annulus, 
cone, cycle, hypercube, path, spider, sun, torus, five kinds of regular polyhedra, etc. 
will be considered to illustrate the utility of our approach. 

In section 2, some concepts and results of linear algebra and operations on 
graphs are reviewed and discussed. Also in section 2, we derive eigenvectors and 
eigenvalues of circulant graphs (e.g. cycles, complete graphs), hypercube, path, 
ladder, annulus, torus, grid, cylinder, etc. from the characteristics of circulant matrix 
and the product operation of graphs. In section 3, similar procedures are applied to 
graphs whose adjacency matrices can be expressed in partitioned form. Classes of 
graphs belonging to this type, such as the k-level-circulant graph, regular polyhedra, 
etc. are considered. In section 4, eigenvectors and eigenvalues of a full complete 
binary tree and a full complete m-ary tree are discussed. Conclusions are given in 
section 5. 

Notation 

Let Pn denote the value e 2i~/n = cos2~/n + i sin2rt/n, where i 2 = -1 .  Let I,, 
denote the identity matrix of order n, 0,,,n denote the zero matrix of dimension 
m x n, and J,,, denote the matrix of dimension m x n of 1 's. CSET(A) is denoted 
as a complete set of eigenvectors of matrix A which contains n independent 
eigenvectors of A. 

2. Linear algebra and operations of graphs 

In this section, we discuss and describe some observations connecting operations 
of matrices and the corresponding operations of graphs. It would be useful if we 
could generate the eigenvalues and eigenvectors of various classes of graphs from 
well-studied graphs, say paths, cycles and small graphs, with the help of those 
operations on graphs. 

We will follow Harary [12,13] and Marcus and Minc [14] for any graph- 
theoretic and matrix terminologies which are not defined in this paper. Let G1 and 
G 2 have disjoint node sets V1 and V2 and edge sets E1 and E 2, respectively. To define 
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their Kronecker product [15] G1 ® G2, consider any two nodes u = (ul, uz) and 
v = (v l ,  1)2). Then, u and v are adjacent in G1 ® G2 whenever uzv2 ~E(GE) and 
u1~1 ~E(G1). Let A = [aij] and B = [bij] be two square matrices of  order m and n, 
respectively. Their join A @ B is defined as the square matrix of  order m + n, 

[a ;_] 
A G B =  Jnm 

Their Cartesian product A x B is defined as the square matrix of  order ran, 

A x B = I n ® A + B ® I m .  

The relations between these operations on matrices and the corresponding 
operations on graphs are described in the following proposition: 

PROPOSITION 1 

Let G and H be two graphs. Then 

(1) A(G u H)=  A(G) u A ( H ) ;  

(2) A(G ~ H) = A(G) • A(H); 

(3) A(G ® H) = A(G) ® A(H); 

(4) A(G × H) = A(G) × A(H). 

According to the following proposition, we can easily find the eigenvalues 
and e igenvectors  of  graph G u H, G ® H, G × H if we have already found 
them for graphs G and H. 

PROPOSITION 2 ([16]) 

Let CSET(A) = {U1, U2 . . . . .  Urn} with AUk = akU~ for k = 1, 2 . . . . .  m and 
CSET(B) = {V1, V2 . . . . .  Vn} with BVj = fljVj for j = 1, 2 . . . . .  n. Then 

(1) CSET(A u B)r= {W1, W2 . . . . .  W.~}, where W ] = [UT 0hi for 1 < k < m and 
Wk+ j = [O.,Vj ] for 1 < j  < n. The corresponding eigenvalue X~ = ak for 1 < k _< m 
and ;~k + j = flj for 1 < j < n. 

(2) = {W1, WE, . . . . .  Wren} where W, v(k_l)n+j = U T ® Vj y for 1 _< k < m 
The corresponding eigenvalue X(~_ lln +j = ak~" for 1 < k < m 

(3) 

CSET(A ® B) 
and l < j < n .  
and l < j  <n.  

CSET(A × B) = {W1, W2 . . . . .  Wren}, where W(k _ 1). +j = Vj @ Uk for 1 < k < m 
and 1 < j  < n. The corresponding eigenvalue X(k_ 1).+j = ak + flj for 1 < k < m 
and l < j < n .  
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A square matrix A is called a circulant matrix or a circulant if its successive 
rows are obtained by cyclic permutations of  its first row. Thus, 

al a2 

an al 

A = a ( n _ l )  a n 

a2 a3 

is a circulant, denoted 
circulant matrix and a 
propositions: 

a 3  *°° a n  

a 2 ... a(n_l) 

a I . . .  a ( n _ 2 )  

a 4 . . .  a I 

by [[al, a2 . . . . .  an]]. Eigenvectors and eigenvalues of  a 
typical example, or path, are given in the following two 

P R O P O S I T I O N  3 ([17]) 

Let square matrix A be a circulant matrix [[al, a2 . . . . .  an] ]. Then CSET(A) 
{V1, V2, Vn}, where V~ = k 2k . . . . .  [ lpnp ,  . . .p(n-1)k] for 1 < k < n. The corresponding 

eigenvalue &k of  eigenvector Vk is given by 

^ ( n - 1 ) k  
"]'k = al + azpkn + a3p 2k + . . .  + unl"n • 

PROPOSITION 4 ([171) 

Let •k = krc/(n + 1) and let Ln be the graph of  the path on n nodes. Then 

(1) A(L n) =[aij] = 

0 1 0 ... 0 0 7  
1 0 1 .. .  0 0 
0 1 0 ... 0 0 

o o o iii o i 
0 0 0 ... 1 0 

where aii= 1 if  i = j +  1; aij=O otherwise. 

(2) CSET(Ln) = {V1, V2 . . . . .  Vn}, where V T = [xklxk2. . .  Xgn] with xkj = sinjSk for 
j , k =  1 ,2  . . . . .  n. 

(3) The corresponding eigenvalue ~,k of  eigenvector Vk is given by &k = 2 cos t5 k. 

For a given positive integer, let nl, n2 . . . . .  nk be a sequence of  integers 
where 

0 < n I < n 2 < . . .  < np < I n .  

Then the circulant graph Cn(nl, n2 . . . . .  np) is the graph on n nodes vl ,  Vz . . . . .  Vn 
with vertex vi adjacent to each v e r t e x  1.)i+nj(modn). The values nj are called 
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j ump  sizes. The circulant graph Cn(nl,  n2 . . . . .  np) is a da-regular graph, where 
da = al + a2 + • • • + a,,,. For example, the circulant graphs C10(1, 3) and C12(1, 2, 5) 
are displayed in fig. 1. The eigenvectors and eigenvalues of  the multi-jump-size 
circulant are stated in corollary 5. 

c '  o ( 1,.3 ) ( b ) ( l ,  :_ ,.,, ) 

Fig, 1, Examples of multi-jump-size circulants, 

COROLLARY 5 

Let Cn(nl, n2 . . . . .  np) be a circulant graph on n nodes. Then 

(1) A(Cn(n l ,  n2 . . . . .  ne)) = [[al, a2 . . . . .  an]I, where ai = 1 if i =  1 + nj or 
i = n + 1 - nj for some j ;  ai = 0 otherwise. 

(2) CSET(Cn(n 1, n 2 . . . . .  np)) {V1, V2, Vn} , where V T = k 2k = . . . ,  [ lpnPn . . .p( ,n-1)k]  

for k =  1,2 . . . . .  n. 

(3) The corresponding eigenvalue ;tk of eigenvector Vk is 

)t. k = 2  ~ cos2nilcx/n if n p ¢ l n  
l<iSp 

and 

~'k = (-1) k +2  ~ cos2nlkn/n if np = l n .  
l<i<p 

The graph of cycle Cn on n nodes is Cn(j), where gcd(n , j )  = 1 and the 
complete graph Kn on n nodes is Cn(1, 2 . . . . .  x), where x = i n  if  n is even; 
x = l ( n - 1 )  otherwise. A complete set of  eigenvectors and eigenvalues of  these 
two classes of  graphs above are easily calculated by corollary 5. 

Several classes of  graphs can be generated by the Cartesian product of  Ln, 
Cn and K 2. For example, Ladder(n) = Ln × K2, Annulus(n) = Cn x K2, Toms(m, n) 
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= Cmx Ca, Grid(m, n) = L= x Ln, Cylinder(m, n) = Lm X Cn. The class of cross graphs 
Cross(n, m) (see fig. 2) is the Kronecker product of L,n and L,,. The eigenvalues and 
eigenvectors of the above six classes of graphs can also be easily found by propositions 
2, 3 and 4. 

e ! 
/ 

O 

• • • 

Fig. 2. L 4 ® L 5. 

O 

The hypercube of order n, Hn, is defined by 

Ho = K1 and Hn = K2 x K 2 x . . . × K2(n times) if n > 0. 

Obviously, CSET(Ho)= {[1]} and the eigenvalue is 0. CSET(Hn) can be 
recurrently constructed in the manner stated in corollary 6. 

COROLLARY 6 

Let H,  be the graph of the hypercube of order n. Then 

(1) A(Hn) = 
-A(Hn_I) I2c,-1) ] 

12C,-1) A(Hn_I) j" 

(2) CSET(Hn)= {WI(n),W2 (") . . . . .  W2(,n) }, where {W2(~)_;,W2(~ )'r } = {[Wk (n-1)T 

+ W~"-I)T ] I W~ "-I)T e CSET(/4._D} for k = 1, 2 . . . . .  2(n-1) 

(3) The corresponding eigenvalue &(k n) of eigenvector Wk (') is n - 2i, where i is 
the number of sign changes in the process of constructing Wk (~), i.e. where 
i is the number of -1  's appearing in the 2J+  1 position, 1 _<j < (n - 1), in the 
vector Wk ('). 
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3. k-level circulant graph and regular polyhedra 

Consider graphs whose adjacency matrices can be expressed in partitioned 
form. Every block is a square matrix of order m and has the same complete set of  
eigenvectors. Examples of such graphs include generalized sun, generalized combs, 
dodecahedron and icosahedron. A lemma and a theorem which are useful for finding 
the eigenvectors and eigenvalues of these graphs are given below. 

LEMMA 1 ([16]) 

Any number of commuting real symmetric matrices can be diagonalized by 
the same real orthogonal matrix. 

THEOREM 7 

Let A/j, 1 < i , j  < n, be square matrices of order n and have the same complete 
set ofeigenvectors {U1, U2 . . . . .  Urn} withAijUk = a!~)Uk. Let B k = [a~ k)] be square 
matrices of order n and have a complete set of eigenvectors {V1 (k), V2 (k) . . . . .  Vn (k)} 
with BkVj (k) =/~(k)V(k) t-'j "j fo r l  < k < m a n d  1 < j < n .  Then a complete set of eigenvectors 
{W1, WE . . . . .  Win,,,} of the square matrix 

A = 

Al l  AI2 . . .  Aln] 

A ] 
. . .  o °  . . . .  

L anl An2 "'" 

is given by W(~_l)n+ ) = V~ k)T ® U[  for k = 1, 2 . . . . .  m and j =  1, 2 . . . . .  n. The 
corresponding eigenvalue ,~k-1)n +j is fl~k). 

Interesting applications of this theorem can be found if the Aij are 
circulant matrices. For a given positive integer, let {9(1} = {nil, n12 . . . . .  nip1 }, {9(2} 
= {n21 , n22 . . . . .  n2p 2 } and  {91//} = {mll ,  m12 . . . . .  mlq 1 } be three sequences of integers, 
where 

0 < n i l  < n12 < . . . < nip x - < i n ,  

0 <  n21 < n22 < . . . < n2p z < i n ,  

0 < m l l  < m 1 2  < . . .  < m l q  ~ <- n. 

Then  the two- l eve l - c i r cu l an t  graph,  denoted  a s  Cn({nll,nl2 . . . . .  nlpl}, 
{n21,n22 . . . . .  n2p2}; {rail,m12 . . . . .  mlq2} ), is the graph def ined on 2n nodes  
1)11, 1)12 . . . . .  1)ln, ½1, 1)22 . . . . .  V2n with vertex Yah adjacent to vertex 1)ca whenever 
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[a = c and b = c + na/(mod n) for some j] or [a = 1, c = 2, d = b + mv(mod  n ) for 
some j]. The Annulus(n) is C.({j} ,  {j}; {0}), where g c d ( n , j ) =  1. 

Let al,  az . . . . .  a .  be a sequence with ai = 1 if i = 1 + mlj  for some j ;  a i = 0 
otherwise. Let V k = [ l p ~ p 2 k . . . p ( . - i ) k ] .  By corollary 5, {Vklk = 1, 2 . . . . .  n} is a 
complete set of  eigenvectors of any circulant graph on n nodes• Let B = [[a~, a2 . . . . .  an]], 
A1 = A(C . (n l l ,  nl2 . . . . .  nl~ )) and A 2 = A(C.(n21, n22 . . . . .  n2p 2 )) be three circulant 
matrices with VkB = ykVk, VkB "r = zkVk and VkAj = CrjkVk for k = 1, 2 . . . . .  n and j = 1, 2. 

COROLLARY 8 

Let A1,A2,  B, V k, {9~1}, {9~2}, {9¢/}, Yk, Zk, (:rik and ak, k =  1,2 . . . . .  n and 
i = 1, 2, be defined as above• Let C.{ {N1}, {N2}; {M}) be a two-level-circulant 
graph. Then 

(1) 

(2) 

(3) 

I A1 B 1 
Cn({N1},{9~2};{gv(}) = B T A 2 

CSET(Cn({N1},  {9(1}; { M ) ) ) =  {W1, W2 . . . . .  W2.}, where {W2~_I,W T} 
= {IV] a v T ] l y k a  2 + (crlk - 0"2~)a - z k = 0} for k = 1, 2 . . . . .  n. 

The corresponding eigenvalues are given by {A.2k-1, &z~} = {Crlk + Yka[YkC~" 
+ (crlk - c r 2 k ) a -  zk = 0 ) .  

The graphs C5({1}, {1}; {0, 1}), C5({0}, {1};{0, 1}) and C8({0}, {1}; {0}) 
are given in fig. 3. 

. i j \ 
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; ............... , , ;  
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Fig. 3. Examples of two-level circulants. 
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i 
, /  

The graph of  generalized sun (generalized comb, respectively), Gsun(n, m) 
(Gcomb(n, m), respectively) on mn nodes Vii, V12 . . . . .  Vm~ with V/k is adjacent to 
vertex Vjk for all k and all distinct i , j  and the nodes {Vii, V12 . . . . .  Vl~} form a cycle 
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Cn (path Ln, respectively). Then, eigenvectors and eigenvalues of these two classes 
of graphs can be obtained by theorem 7. 

Cn({ff~l} ,  { N 2 }  . . . . .  {ff~k}; {ff¢/'12}, {ff¢[13} . . . . .  {ffC/k(k-1)}), where ni's stand 
for intra-circulant jump sizes in the ith circulant and mij's stand for inter-circulant 
jump sizes between ith and jth circulants. There are many classes of graphs which 
can be included in this category, such as the graphs in fig. 4. 

• O 

/ 
/ \, / 

/ 

\ 

)" • 

• ( 

/ / 

// '~ ,. 
\~ . .... 

/. I 

Fig. 4. Three-level and four-level circulants. 

.,-T ̧, ..... 

t ~'t r ;~hodl '~>l l  h e m  a h o , . l r o l l  oc : l~  h e~,] 1"o n d o ~ l e o a h e ~ l r o l l  ioosahedl'oll 

Fig. 5. Five regular polyhedra. 

There are exactly five kinds of regular polyhedra (see fig. 5): tetrahedron 
(K4), hexahedron (H3), octahedron (K2 + C4), dodecahedron and icosahedron. The 
eigenvectors and eigenvalues of the dodecahedron can be derived by applying 
theorem 7 and the following lemma. The results are stated in corollary 9. 

LEMMA 2 

Given the matrix 
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Then: 

(1) 
(2) 

M = 

1oo b 
c 0 

0 1 

CSET(M) = {[1 a a f l f l ] l c f l  2 =  b and ct2+ ( a -  c f l )c t -  1 = 0}, and 

The corresponding eigenvalues are { a + a I c f l  2 = b and a 2 + (a - c f l ) a -  1 = 0}. 

COROLLARY 9 

Let U~ = k 2k [1PnPn • • • p(n-1)k]. Then we have 

(1) A(dodecahedron) = 

where 

B = 

"A(C 5) 15 055 055 ] 

15 055 B 055 1, 

055 B T 055 15 | 

055 055 15 A(Cs) J 

1 0 0 0 1 1 1 1 0 0 0 

0 1 1 0 0 . 
0 0 1 1 0 
0 0 0 1 1 

(2) CSET(dodecahedron) = {W1, W2 . . . . .  W2o}. For k = 1, 2, 3, 4, 5, 

{W T ,  wT_I,  wT_2, wT_3} = {[1 a a fl fl] ® Ukl a 2  + (2 cos(2kx/5) 

+ 21/2(1 + c o s ( k x / 5 ) ) l / 2 ) a  - 1 = 0}. 

(3) The corresponding eigenvalues are 

{ a +  2 cos(2kn/5)l a2 + (2 cos(k~/5) + 21/2(1 + cos(krc /5)) l /2a  - 1 = 0, 1 < k < 5}. 

For the derivation of eigenvectors and eigenvalues of an icosahedron, it is 
necessary to learn the eigenproperties of graphs which can be obtained through the 
operation d i rec t  s u m  on two circulant graphs. A general theorem concerning the 
eigenproperties of d i rec t  s u m  on two circulants is stated below. 

THEOREM 10 

Let U T [1 k 2k = PmPm"  • • p~m-1)k ] and V 7 =[1 p~p~ j 2 j .  • • Pn(n-1)J] for k = 1, 2 . . . .  ,m 
andj  = 1, 2 . . . . .  n. Let square matrices A = [[al, a2 . . . . .  am]] and B = [[bl, bE . . . . .  b,d] 
be two circulant matrices. Then 
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[a 
(1) A ~ ) B =  Jnm " 

(2) C S E T ( A @ B ) =  { W , , W 1 , . _ .  Wm+n},where w T = [ o 1 m v T ] i f l  < k < n - 1 ;  
T T l < _ k  ~ - m -  Wn+ k = [ U  k 01,] i f  1 and {W~,W~m } = { [J l , , aJ l , ] l na  z 

+ ot(d a - d B )  - m = 0}, where da = al + a2 + . . .  + am and do = bl + b2 + . . .  + bn. 

(3) The corresponding eigenvalue A,k of  eigenvector Vk is given by 

~ = b l + b2p ~ + b3p 2k + . . .  + bnp(n n-1)k if 1 < k < n -  1; 

, ~ ( m - 1 ) k  A,n+ k = a I + a2pkm + a3p 2k +...t~raem if 1 < k < m - 1 
and 

{A,, ;~,+m} = { n a +  dalna 2 + a(d  a - d o ) - m  = 0}. 

Let the generalized wheel graph W,,,n be the graph K,n ~ C,, and the complete 
bipartite graph Km,n be the graph Km@ Kn. Then, CSET(Wm,n), CSET(Km,n) and 
their corresponding eigenvalues can be obtained by theorem 10. 

Now, we are able to develop the derivation for the case of  an icosahedron 
and its generalization. The following theorem is essential in the derivation and the 
results are given in corollary 12. 

T H E O R E M  11 

Let U~ = k 2k [lpmp, n .. .p(m n-1)k] for k =  1, 2 . . . . .  m and let P be the matrix 

p = 
, o  OA 1 

1 B 0ml 

Olm 0 JBm ~ ' 
Lo, l AT Jml 

where square matrices A = [[al, a2 . . . . .  a,n]] and B = [[bl, b 2  . . . . .  bn]] are two 
circulant maatrices. Then 

(1) C S E T ( P )  : {W,, W 2 . . . . .  W2m+2}, where  {wT_I ,W T}  = {[ouTkoauT]I 
0~2 /k x-~ r ,  r~ ( i -1 )k  1 - -  - -  f w T  , w T ,  (~,l<iamam+l_iPm) = ,,.l<i~m~il.,m j if 1 < k < m - 1; and t 2,1-1 2m 
Wffm+l, WTm+2} = {[a J m sOt SJm]lS = +1, a 2 + a(d  A + SdB) - m = 0}. 

(2) The  co r r e spond ing  e igenva lues  {22k_X,,q.Zk } = {(Yq~is,n(b i+aai)p~-l)k)l  
2 ik --W a ~ ( i - 1 ) k l  _ _ , 

a (Yq~igmam+l_iPrn) -~l~i~rn iP'm j if  1 < k < m - 1" and {~2m_l,22m, 
~m+l,  ~2,.+2} = { m / a l a  2 + a ( d  o + d A ) - m  = 0}. 
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COROLLARY 12 

A(icosahedron) = 

where 

B = 

and 

A = 

Then 

1 B 051 

015 0 JBS] ' 
1.051 AT Js1 [i lo01] 0 1 0 0 

1 0 1 0 

0 1 0 1 
0 0 1 0 

1 0 0 0 1 ]  

J 
1 1 0 0 0 

0 1 1 0 0 . 
0 0 1 1 0 
0 0 0 1 1 

(1) CSET(P) : {W1, W2 . . . . .  W12}, where {wT_I, W w } = { [0 U T 0 aU  T ]1 a2 (1 + p4k) 
= 1 + p ~ i f l  < k < 4 ;  {Wf,W1To} = {[vTvT]IvT = [1 1 1 1 1 1] o r [ - 5  1 1 1 1 1]}; 
and {wIT, w1 T} = {IV T - v T ] I  VT =[51/21 1 1 1 l] o r [ - 5 1 / 2 1 1 1 1 1 ] } .  

(2) The  c o r r e s p o n d i n g  e i g e n v a l u e s  { ~ k - l , ~ k }  = { ( a ( I + p ~ ) + p ~ + p a k )  I 
/3cZ (1 _1.. _4k) k} _ P5 = l + p 5  i f l < k < m  1; and {X9,2,1o, 2,1~, 2,12} = { 5 , - 1 ,  51/2, 
_5~zz}. 

4. Full complete binary tree and full complete m-ary tree 

A graph G in which a vertex is distinguished from other vertices is called a 
rooted graph and this distinct vertex is called the root of  G. The complete  binary 
tree is a rooted tree where each vertex has either 0 or 2 sons. The height of a rooted 
tree is the maximum level number  of its external vertices. The full complete  binary 
tree of  height n, B,, (see fig. 6) is a complete binary tree where each external vertex 
has the same height. 

The full complete binary tree is a special class which can be constructed 
recursively in the following way: 

B 1 = K I ,  

and let p =  2 n -  1 and Sp= [sl, Sz . . . . .  sp], where si= 1 if i =  1; si=O otherwise. 
Then 
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Fig. 6. Complete binary tree B 4. 
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T A(B.+I) = Sp B. for n >  0. 

T 8. 3 Sp 0 

Obvious ly ,  C S E T ( B 1 ) =  {[1]} and the e igenvalue  is 0. The comple te  set o f  
e igenvectors  and e igenvalues  o f  B. can be recurrently constructed according to 
theorem 13. 

THEOREM 13 

L e t p  = 2 " -  1, q =  2 "-1 
binary tree. Then 

- n, r = 2 " -  1 _ 1 and B.  be the graph o f  a full complete  

{W,('), W,(") ,We(")}, w h e r e  {W,(")V,W2(~)T}={[OW,("-I)r (1) C S E T ( B . )  = 1 2 . . . .  2k-1 

+w(n-l)T][w(n-1) E C S E T ( B n _ I )  } fo r  k =  1 , 2  . . . . .  q; W ( : ! r = [ 0 W k  (n-1)v 

,,,(n)v . = [ 1 a ( '  ) ,  a2 (n'k)v] fo r  -Wk("-l)v)] for  k = q + 1, q + 2 . . . . .  r ;  vvt;_.+ a 

k = 1, 2 . . . . .  n, where A(n'k)r= A~ "'k)T = [ala 2. . . at] with az(;-~) = . . . = a 2 ; 1  

= 2 (1-i)/2 s in( /+  1)Sk/sin 5 k, where  Sk = krc/(n + 1). 

(2) The corresponding e igenvalue ~k o f  e igenvector  Wk (") is 2~)__1 = ~ ) =  ;I.(k "- ' )  

~(.) = ,~(kn-1) fork=q+ l,q+ 2,. rand /q.p_n+k = 23/Z cosSk for k = 1,2 . . . . .  q; "Oq+k . - ,  

with Sk = k~/(n + 1) for  k = 1, 2 . . . . .  n. 

The comple te  m-ary tree is a rooted tree where  each vertex has ei ther  0 or  
m sons. The full comple te  m-ary tree o f  height n, B (m), is a comple te  m-ary tree 
where each external vertex has the same height. Then 
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THEOREM 14 

L e t p =  m n-1 + m n - = + . . .  + m +  1 , q = m n - 2 + m " - 3 + . . .  + m +  1 - ( n -  1), 
r = m ~-2 + m n-3 + . . .  + m + 1 and B(n m) be the graph of the full complete m-ary 
tree. Then 

0 Jim ® Sp] 

A(B(+~) = (Jim ® Sp) T 0 = 

for n > 0 .  

0 Sp Sp ... Sp 

T B~m) 0 ... 0 Sp 

T B ~ m )  Sp 0 ... 0 

. . . . . . . . . . . . .  ° .  

W B ~ m )  Sp 0 0 ... 

till(toT bI/(n) T U/(n) T 
(1) CSETf B(m)) = {Wl(n),W(n) . . . . .  w(n)}, where tVVrnk_m+l,,,mk_m+2 . . . . . . .  m k }  

= {[0zm/®Wk(n-DV]lwk(n-l)v e CSET(B~(~_}), 1 < i_< m} for k = 1, 2 . . . . .  q; 
fW, (n)T I l l ( n )  T bI / (n)  w / - / I'lq ,., 6J~ b l / ( n - l )  T ] I U / (  n-1)w 
t ( m - 1 ) k + q - ( m , - 2 ) , V V ( m _ l ) k + q _ ( m _ 3 )  . . . . .  " ( m - 1 ) k + q J  - -  t t w * ' m /  '~" " k  Jl ~ k  ,T 

t in )  < . < . . . t n )  CSET(B ), 2 t m} for k = q +  1, q + 2 ,  , r  and Wo ~ n+k 
- -  r l  a ( n , k ) T n ; : n , k )  T a ( n , k )  T 1 F'c,r b - -  1 9 . . . .  h , ~ , ~  a ( n . k )  r - -  B i n , k )  r - -  " -  - -  

- - t  x n 1 n 2 . . . * a  m j x v ,  r ~ - -  * , , - , . . . , , - l ,  * , , l v * ~ .  c ,  l - -  n 2 - -  . . . - -  

A(m"'~)T= [ala 2 . . .ar] with aml-Z+mi-X+...+m+l = . . . = ami-l+mi-E+...+m+l 
= 2 (1-0/2 sin(/+ 1)St/sin 8 k, where ak = krt/(n + 1). 

(2) The corresponding eigenvalue Zk of eigenvector W~ ") is a(~) ~(,0 "~mk-rn+l  ----- "L'mk-m+2 
~(~) _ ~ ( n - 1 )  e , , r  v -  1 o ~ .  a ( n )  _ ~ ( n )  

= " " " = ~ m k - m  - -  : " k  , . , a i  r,. - -  x ,  z .  . . . . .  e l '  " q ' ( m - 1 ) k + q - ( m - 2 )  - -  t L ' ( m - 1 ) k + q - ( m - 3 )  
(n) ( n - l )  (n) 112 /~,,,-1)k+q = Xk for k = q + 1, q + 2 . . . . .  r and Xp_~+ k = 2m cos S k 

with Sk = kr~/(n + 1) for k = 1,2 . . . . .  n. 

5. Conclusions 

First of  all, we investigate the general properties of eigenvectors and eigenvalues 
of  circulant graphs and paths. By applying some graph operations, we can then 
easily derive the eigenvectors and eigenvalues for classes of graphs, which were 
built up from circulants and paths, without calculating the characteristic polynomial. 
Several classes of  graphs such as generalized wheels, regular polyhedra, k-level- 
circulant graphs, etc., are given to demonstrate the application of our methods. 
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